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An inner-sphere mechanism involves electron-transfer 
via a bridging ligand, as exemplified by the system 

(NH3)5CoX2+ + Fe2+aq - 
[ (NH3) .&O~+--X-*.F~~+,~]* -+ 

( N H ~ ) & o ( O H ~ ) ~ +  + FeX2+aq 

Should such a reaction proceed by an outer-sphere 
mechanism a negative AV is predicted. Observed val- 
ues of +11 (X = F-), +8 (X = C1-, Br-), and +14 (X = 
N3-) em3 mol-1 have been interpreted in terms of an 
inner-sphere mechanism with appreciable desolvation 
of the charged species in the transition state contribut- 
ing positively to the experimental AV*.49 Recently, 
activation volumes for reduction of Co(NH3)&12+ by 
iron(I1) in the presence of sulfate ion show the influence 
of an iron(I1) sulfate pre-equilibrium with a significant 
variation of AV observed for varying Fe(S04)aq/Fe2+aq 
ratios.50 This variation is consistent with inner-sphere 
reduction by two separate pathways with FeZfaq or Fe- 

Concluding Remarks 
While the topics discussed above encompass recent 

research endeavors within our laboratories for the ap- 
plication of activation volumes to mechanistic elucida- 
tion in reactions of octahedral metal complexes, we can 
expect the technique to continue to be applied to new 
areas of mechanistic interest in the future. Although 
definitive mechanistic evidence will not always be 

(SOdaq- 

(49) J. P. Candlin and J. Halpern, Inorg. Chem., 4, 1086 (1965). 
(50) S. Suvachittanont, J.  Sci. Soc. Thailand, 3, 118 (1977). 

forthcoming from activation volumes, there is now a 
sufficient body of experimental data accumulating to 
allow useful mechanistic information to be gleaned from 
most studies. Certainly activation volume is proving 
superior to activation entropy as a general mechanistic 
guide, since AV is usually determined with good pre- 
cision, and the concept of a volume difference between 
initial and transition state is amenable to simple mech- 
anistic modelling. 

The principal and sometimes severe difficulty in in- 
terpretation or prediction of AV lies in an assessment 
of the size of any electrostrictive component. Since we 
are usually dealing with ionic species and often with 
motion of charged ligands in the activation step, elec- 
trostrictive components can dominate intrinsic compo- 
nents. It is likely future investigations of the role of the 
nonleaving groups in series of complexes with common 
leaving group and metal ion may aid our understanding 
of electrostrictive effects. Further, studies in a range 
of both protic and aprotic solvents, where solvation 
effects should vary considerably, should be of value. 
Few applications in reactions of organometallic com- 
pounds have been reported, and some expansion in this 
area would be welcome. 

The increasing body of experimentally determined 
activation volumes and reaction volumes, combined 
with their value in mechanistic elucidation, presage a 
continued expansion in the study of reactions at  ele- 
vated pressures in the area of conventional kinetics 
which is our prime interest. The investigations of ac- 
tivation volumes for octahedral coordination complexes 
offer more detailed insights into the actual molecular 
rearrangements occurring during their reactions. 
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People get interested in solubility theory for one of 
two reasons. Engineers and applied scientists see it as 
a means of predicting solubilities in those systems for 
which data are wanted, but do not exist, and are im- 
practical to obtain. Those among us with more theo- 
retical inclinations would like to know, from the basis 
of intermolecular forces, why, at any specified temper- 
ature and pressure, one substance dissolves in another 
to exactly the extent that is observed. In this Account 
we deal with the theoretical aspects of solubility theory; 
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in particular, after a preliminary comment we do four 
main things. First we will go through a bit of history, 
and in the process point out those early ideas that have 
found a lasting place in solubility theory. Then we show 
how recent advances in the theory of liquids has made 
it possible to quantitatively predict solubilities and re- 
lated functions from intermolecular forces without using 
any adjustable parameters. Calculations of this kind, 
even for the very simple systems we describe, were not 
possible prior to about a decade ago. Following this we 
show how these calculations can be used both in an 
approximate way to interpret solubility data in complex 
systems and in a rigorous way to intercompare theories 
and to elucidate the influence on solubility made by 
previously neglected phenomena such as quantum ef- 
fects and nonadditive intermolecular forces. Finally, 
we outline some of the remaining problems in the field 

0 1979 American Chemical Society 



410 Goldman Accounts of Chemical Research 

and indicate a possible direction of future research. 
The distinguishing feature of modern solubility theo- 

ry is that it is based on calculations that explicitly in- 
clude a function called the radial distribution function. 
This function, given the symbol g(r,p,T) ( r  = interpar- 
ticle distance, p = number density, T = absolute tem- 
perature), is the factor that multiplies the bulk or ma- 
croscopic density of a liquid p to give the time-averaged 
microscopic or local density, pg(r,p,T), around some 
fixed molecule. The gross characteristics of this func- 
tion are more or less obvious; i.e. g(r)  - 0 as r - 0 since 
the intermolecular forces through which atoms or mol- 
ecules interact become increasingly repulsive as the 
electron clouds around the species begin to overlap. 
Also, since we are not dealing with solids, which are 
characterized by long-range order, it  should be clear 
that g(r )  - 1 as r - a. That is, the capacity of a 
selected molecule to influence the time-averaged mi- 
crocopic density diminishes as the distance away from 
the selected molecule becomes large. At intermediate 
distances this function goes through a number of ex- 
trema, the details of which depend on the intermolecu- 
lar forces in question. As will be shown later, the reason 
the radial distribution function is so important is that 
it is always intimately involved in any statistical me- 
chanical theory whose purpose is to calculate the ther- 
modynamic properties of solutions from intermolecular 
forces. 

Almost half a century ago, Sisskind and Kasarnowski’ 
published a paper that contained what turned out to 
be a very clever and insightful idea. They suggested 
that the energetics involved in the transfer of a molecule 
from the gas phase to a liquid solution be mathemati- 
cally decomposed into two terms. One of these terms, 
they suggested, originates from the work that has to be 
done against the intermolecular forces in the solvent in 
order to create a cavity that will accommodate the so- 
lute about to be transferred. This term represents an 
energy requirement. A second term, representing an 
energy gain, arises due to the interaction of the solute 
molecule in the cavity with the surrounding solvent 
molecules. A few years after its publication, Uhlig2 and 
Eley3 pursued this idea in their work on solubility. Uh- 
lig correlated the surface tensions of a variety of pure 
liquids with the solubilities of gases in these liquids. 
Uhlig used the macroscopic surface tension of a liquid 
to calculate the work required to create a cavity. Eley’s 
approach differed from Uhlig’s principally in the way 
in which he calculated the cavity term. Eley used ma- 
croscopic solvent compressibilities for this calculation. 
For a number of reasons, neither Uhlig nor Eley could 
come up with quantitative predictions of solubility. 
These include the inappropriateness of macroscopic 
surface tensions or compressibilities in the calculation 
of the work required to make microscopic cavities and 
the unavailability (at the time) of accurate pair poten- 
tials and radial distribution functions, both of which 
are needed to calculate the second of the two terms- 
the solute-solvent interaction term. 

The next major advance was made about 25 years 
later by Robert P i e r ~ t t i , ~  who took the same general 

(1) B. Sisskind and I. Kasamowsky, 2. Anorg. Allgem. Chem., 214,385 

(2) H. H. Uhiig, J. Phys. Chem., 41, 1215 (1937). 
(3) D. D. Eley, Trans. Faraday Soc., 35, 1281 (1939). 
(4) R. A. Pierotti, J.  Phys. Chem., 67, 1840 (1963). 

(1933). 

approach as Sisskind, Kasarnowski, Uhlig, and Eley, 
but Pierotti used a newly developed statistical-mechan- 
ical theory called the scaled particle theory5 (SPT) in 
order to calculate the cavity term. Pierotti equated the 
cavity term in a real solution to the reversible work 
required to create a cavity in the dense assembly of hard 
spheres. The scaled particle theory provides explicit 
expressions for the thermodynamic functions that 
characterize dense hard-sphere or hard convex-like 
molecule assemblies. But there still remained two fun- 
damental problems with Pierotti’s approach. First, a 
real solution is not comprised of hard spheres, SO that 
Pierotti’s estimate of the cavity term is only an esti- 
mate. Second, and perhaps more serious, was the fact 
that theoretical expressions for the distribution func- 
tions were unavailable when Pierotti did his work. Thus 
Pierotti was forced to approximate g(r,p,T) by unity, 
and therefore he was unable to calculate the contribu- 
tion made by the solute-solvent interaction term in a 
fundamental way. Further on in this Account we show 
how the cavity and interaction terms can be accounted 
for in a rigorous way. 

By the early 1 9 7 0 ~ ~  all the ingredients needed for a 
truly fundamental solubility theory (applicable to iso- 
tropic systems) had become available. These ingredi- 
ents included: (1) accurate intermolecular pair poten- 
tials obtained from the gas phase by using molecular 
beams, gas viscosities, and virial coefficients and from 
solid-state studies; (2) detailed knowledge of the radial 
distribution function in some prototype of a dense iso- 
tropic fluid (The development of Monte Carlo simula- 
tions, molecular dynamics calculations, and the solution 
of integral equations such as the Percus-Yevick equa- 
tion for dense fluids provided this information. The 
prototype fluid was the dense hard-sphere fluid and the 
above methods provided the needed distribution func- 
tions, both for pure hasd.sphere assemblies and for 
hard-sphere mixtures); (3) a procedure for connecting 
the properties of a hard-sphere system to those of the 
system of interest. This connection was provided in a 
rigorous way by a procedure called either thermody- 
namic perturbation theory or liquid-state perturbation 
theory, the salient features of which are outlined below. 

Thermodynamic Perturbation Theory 
In the late 1960s Verlet, using computer simulations 

of hard-sphere assemblies, showed that the structure 
of a hard-sphere fluid was quite similar to that of a real 
isotropic fluid in which attractive forces exista6 This 
result and others like it led to the view that the struc- 
ture, Le., g(r,p,t), of dense isotropic liquids is determined 
primarily by the repulsive part of the pair potential. 
Consequently, the influence of the attractive part of the 
potential on the thermodynamic properties of a fluid 
can be obtained by a perturbation expansion around a 
hard-sphere reference state. The required formalism 
had been previously provided by Z ~ a n z i g . ~  The first- 
order result provided by this theory is given by eq I ,  

m 

A = A. C 2 ~ N p  r2u,(r)go(r) dr + ... (1) 

(5) H. Reiss, H. L. Frisch, and J. L. Lebowitz, J.  Chem. Phys., 31, 369 
(1959); H. Reiss, H. L. Frisch, E. Helfand, and J. L. Lebowitz, ibid., 32, 
119 (1960); E. Helfand, H. Reiss, H. L. Frisch, and J. E. Lebowitz, ibid., 
33, 1379 (1960); H. Reiss, Adu. Chem. Phys., 9, 1 (1965). 

(6) L. Verlet, Phys. Reu., 166, 201 (1968). 
(7) R. Zwanzig, J .  Chem. Phys., 22, 1420 (1954). 
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,where A and A. are the Helmholtz free energy in the 
real and reference system respectively, go(r) is the radial 
distribution function in the reference state, and up(r), 
the perturbing pair potential, is given by eq 2. In eq 

up(d  = - uo(r) (2) 

2 u(r) and uo(r) are the actual and reference state in- 
termolecular pair potentials, respectively. 

The infinite series represented by eq 1 will converge 
rapidly (i.e., the first two terms shown in the series will 
accurately approximate A) if Pup(r) is small, i.e., if the 
temperature is high relative to the perturbing potential. 
It can also be made to converge rapidly at low temper- 
atures and high densities if the division of u(r) into up(r) 
and uO(r) be such that go(r) closely approximates g(r). 
Since, as already mentioned, the structure of a dense 
isotropic liquid is determined primarily by the repulsive 
part of the pair potential, go(r) will closely approximate 
g(r) at high densities if uo(r) is based on the repulsive 
part of the pair potential. We will return to this point 
further on in this Account. The higher order terms in 
the series are complicated and difficult to evaluate ac- 
curately because they involve integrals over higher order 
reference-state distribution functions (e.g., triplet, qua- 
druplet . . . distribution functions) about which little 
is known. This is one of the problems encountered in 
the direct application of Zwanzig’s theory to liquids. 
Another is the problem of how to separate u(r) into uo(r) 
and up(r). 

For these reasons three different perturbation theo- 
ries, similar in spirit but different in detail from Zwan- 
zig’s, have been developed.*-13 They all provide an 
objective basis for the separation discussed above, and 
also they were formulated to ensure rapid convergence 
of the series shown in eq 1. 

Before describing these theories it is worthwhile to 
mention one additional problem that occurs when per- 
turbation theory is applied to mixtures as opposed to 
pure fluids. If we consider a binary solution in which 
the solute has a significantly deeper well depth than the 
solvent, then the solute may tend to form clusters or 
aggregates because of the attractive part of its pair 
potential, so that for this situation the first two terms 
in eq 1 will provide an inadequate approximation for 
A ,  and higher order terms have to be included.14J5 
Fortunately this problem is not strongly relevant to the 
present application wherein the solute is always at  in- 
finite dilution and so cannot form clusters. 

The first-order expressions for binary mixtures that 
obey classical statistics with pairwise additive intermo- 
lecular potentials are given by eq 3-5 for the Leonard- 

(8) J. A. Barker and D. Henderson, J.  Chem. Phys., 47, 4714 (1967). 
(9) P. J. Leonard, D. Henderson, and J. A. Barker, Trans. Faraday 

(10) G. A. Mansoori and F. B. Canfield, J. Chem. Phys., 51, 4958 

(11) G. A. Mansoori and T. W. Leland, Jr., J .  Chem. Phys., 53,1931 

SOC., 66, 2439 (1970). 

(1969). 

(1970). 
~ 

54, 5237 (1971). 
(12) J. D. Weeks, D. Chandler, and H. C. Andersen, J.  Chem. Phys., 

(13) L. L. Lee and D. Levesque, Mol. Phys., 26, 1351 (1973). 
(14) D. Henderson, J .  Chem. Phys., 61, 926 (1974). 
(15) S. H. Sung, D. Chandler, and B. G. Alder, J. Chem. Phys., 61,932 

(1974). 

Henders~n-Barker ,~,~ variational or Mansoori-Can- 
field,lOJ1 and Weeks-Chandler-Ander~en~~J~ theories, 
respectively. In each of these equations the division of 
u(r) into up(r) and uo(r) is diffuent (see below), so that 
the terms #’, u$’(r), and giF(r) are all different. 
Hereafter we will use the abbreviations LHB, MC, and 
WCA for these theories. In these equations 

is the reduced Helmholtz free energy per particle rela- 
tive to this quantity in an ideal gas mixture a t  the same 
N1, N2,  V, and T as the solution of interest. of” is this 
quantity for the reference state mixture. Also x is mole 
fraction, p is total number density = (Nl + N z ) / V ,  the 
superscripts 0, p, and HS mean reference state, pertur- 
bation, and hard sphere, respectively, dij is the hard- 
sphere reference-state diameter between particles i and 
j ,  and yijHS(r) is the hard-sphere radial distribution 
function, smoothly extrapolated to r = 0. The term a12 
in eq 3 is similar in magnitude to d12. 

The LHB and MC theories are both based on a 
hard-sphere reference state, but the way in which the 
hard-sphere diameters are calculated differ.8-11 The 
WCA theory is not based on hard-sphere reference 
state. Rather it is obtained from the following division 
of the potential u(r) 

uo(r) = uLJ(r) + e, r c r, 
= 0, r 2 r, 

up(r) = - 6 ,  r < r, 
= uLJ(r), r I r, 

where uU(r) is the Lennard-Jones 6-12 pair potential.16 
In this particular division uo(r) is based on all the re- 
pulsive forces in the Lennard-Jones system. Conse- 
quently go(r) will very closely resemble g(r),17 so that 
the first two terms in eq 1 will provide a particularly 
good approximation for A.  
Thermodynamics 

We now connect the measurable quantities that arise 
in solubility investigations with the statistical-mechan- 
ical quantity Pf which is calculable from any one of eq 
3 to 5. 

The most commonly used measure of solubility of a 
volatile solute is the Henry’s law constant. For a vapor 
phase over a solution that is reasonably dilute (Le., P 
5 10 atm) the solute in the vapor phase may be con- 
sidered to behave as an ideal gas. Under these circum- 
stances the Henry’s law constant ( K )  of the solute is 
given by eq 6, where P is the partial pressure of the 

K = lim (P2 /x2)  (6) 
xz-0 

(16) The Lennard-Jones 6-12 pair potential has the form 

u(r) = 4 e [ ( ~ / r ) ’ ~  - (u/rY] 

u(r) has a minimum equal to -e at r = 2lI6u; u(r) is zero when r = u. 
(17) D. Chandler, Acc. Chem. Res., 7, 246 (1974). 
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solute over the solution and x2 is the mole fraction of 
the solute in the solution. From this definition and the 
usual thermodynamic relations we obtainla eq 7-9. In 

(7)  

these equations R is the gas constant, subscripts 2 and 
1 mean solute and solvent, respectively, Vl is the molar 
volume of the pure solvent, n denotes number of moles, 
and the superscript * denotes the limit x2 - 0; AHs* and 
V2’ are respectively the molar heat of solution and the 
partial molar volume of the solute a t  infinite dilution. 
Microscopic Basis of Cavity Term and 
Solute-Solvent Interaction Term 

We have in eq 7 a connection between solubility and 
terms that directly involve the energetics of the solution 
process at  a microscopic level. For example, if eq 4 from 
the variational theory is used for Pf in eq 7, we ob- 

eq 10, tain1920 

+ Pp2’ (hard sphere) + Ill” + 112’ 

(10) 
where 
pp2” (hard sphere) = Pf‘ (hard sphere) + 

a Pf(hard sphere) 

aN2 
______. N1 

112’ = 4aplP Lm r2~12(r)g12HS’(r) d r  
12 

The In (RT/ Vl) term arises solely because of a different 
choice for the solute standard state in the liquid and 
gas phases, so that it is not involved in either the cavity 
or the interaction terms. The term Pp2’(hard sphere), 
on the other hand, comes from the reversible work re- 
quired to create a cavity of diameter d22 in a hard- 
sphere system of particles with diameter dll at the same 
density, temperature, and composition (infinite dilution 
with respect to the solute) as the solution of interest. 
Clearly, however, there has to be an additional term 
that corrects the hard-sphere cavity term to a cavity 
term for the soft-sphere system of interest. It was first 
pointed out by Neff and McQuarrie2I that the term 
represented by Ill’ provides this correction to the first 
order. As may be seen by examining the expression for 
Ill*, this term arises because of a change in the total 
solvent-solvent interaction potential energy beyond 
that accounted for by hard-sphere potentials. This 
change is brought about by the creation of a cavity in 

(18) S. Goldman, J .  Solution Chem., 6, 461 (1977). 
(19) D. A. McQuarrie, “Statistical Mechanics”, Harper and Row, New 

(20) S. Goldman, J.  Phys. Chem., 81, 608 (1977). 
(21) R. 0. Neff and D. A. McQuarrie, J .  Phys. Chem., 77, 413 (1973). 

York, 1976, pp 324 325. 

a real solvent. The presence of the cavity causes the 
solvent structure to be altered from what it is in the 
absence of a cavity, and this results in a change in the 
total solvent-solvent interaction potential energy. Fi- 
nally, the solutesolvent interaction energy is accounted 
for by the term I12’. The fact that this term has the 
form of the integral shown has long been known. What 
is new is our ability to obtain accurate values of 112’ 
because of our newly acquired knowledge of the term 
g12’HS(r) in the integrand of this term. 

Results 
The results given below are grouped into four cate- 

gories which result from the different types of problems 
to which the theoretically derived equations were ap- 
plied. As will be seen, the applications differ in degree 
of rigor from somewhat ad hoc to fundamental. The 
computational details will of course not be given here. 
They can be obtained from ref 18, 20-26. 

(a) Preferential Solvation in Mixed S o l l ~ e n t s . ~ ~ , ~ ~  
This application, which is in the ad hoc category, was 
undertaken because of the importance of this subject 
to chemists and because a truly microscopic theory had 
never before been applied to a phenomenon that so 
obviously is microscopic in origin. 

We call this application ad hoc because it was neces- 
sary to approximate the solvent-solvent and solvent- 
water pair potentials by “effective” isotropic potentials 
and because it proved necessary to obtain the effective 
water-solvent pair potentials by fitting to experimental 
solubility data in the unmixed solvents. The idea is 
really quite simple. Water is known to obey Henry’s 
law up to saturation in each of pure benzene, carbon 
tetrachloride, and cyclohexane.22 Also the solubility of 
water in benzene, carbon tetrachloride, and cyclohexane 
is in the ratio of about 10:4:1. Therefore, we might 
expect that water may be preferentially solvated by 
benzene when dissolved in the binary mixtures benz- 
ene- cyclohexane or benzene-carbon tetrachloride and 
by carbon tetrachloride when dissolved in binary mix- 
tures of carbon tetrachloride and cyclohexane. The 
Henry’s law constants of water in the pure and mixed 
solvents were experimentally determined,22#23 and all 
that remained was to devise a theory that would quan- 
titatively predict the Henry’s law constants of water in 
the mixed solvents, under the assumption of no prefer- 
ential solvation of the water. Then a comparison of 
theory and experiment would provide a basis for de- 
ciding whether preferential solvation of the water oc- 
curred in m y  of the systems. The theoretical expression 
for the Henry’s law constant was a modified, three-com- 
ponent version of eq The condition of no prefer- 
ential solvation of the water in the mixed solvent sys- 
tems was incorporated into the theoretical expression 
for In K by using hard-sphere radial distribution func- 
tions to characterize the water-solvent and solvent- 
solvent distribution functions. 

Some of the results obtained are displayed in Figure 
1 from which it is seen that in the benzene-cyclohexane 
mixed solvents the experimental points (open circles) 
fall systematically below the theoretical curve, but that 

(22) S. Goldman, Can J .  Chem., 52, 1668 (1974). 
(23) S. Goldman and T. R. Krishnan, J .  Solution Chem., 5,693 (1976). 
(24) S. Goldman, J .  Chem. Phys., 67, 727 (1977). 
(25) D. IIenderson, Annu. Reo. Phys. Chem., 25 ,  461 (1974). 
(26) 9. Goldman, J.  Chem. P h ~ s . ,  69, 3775 (1978). 
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Table I 
Deviations between the  Classically Calculated Values of K ,  v; , and AH,' (cal/mol) and the  

Corresponding Quantum-Corrected Values for H,, He, and Ne in C6H6 
- AH,'( quantum) - 

AHS' (classical)' V' (quantum)/ V2* ( classical)' __ - - K(quantum)/K( classical)' 
t ,  "C HZ He Ne HZ He Ne HZ He Ne 

20 1.066 1.021 1.008 1.022 1.008 1.003 90 29 12 
60 1.047 1.015 1.006: 1.018 1.007 1.003 77 25 10 

100 1.035 1.012 1.004 1.016 1.006 1.002 68 22 8.7 
150 1.024 1.008 1.003 1.013 1.005 1.002 62 20 7.9 
200 1.017 1.006 1.002 1.011 1.004 1.001 59 19 7.4 

a The experimental values of K ,  V2', and AH,' for H, in C,H, at 25 "C are 3.38 x l o 3  atm, 35 cm3/mol, and 1520 cal/ 
mol, respectively; see E. B. Smith and J. Walkley, J. Phys. Chem., 66, 597 (1962), and J. H. Hildebrand and R. L. Scott, 
"Regular Solutions", Prentice-Hall, Edgecliff, NJ, 1962. 
difference rather than a ratio, since AH,' for the H, in C,H, system goes through zero in the range 20-200 "C. 

The results for the quantum effect on AH,' are expressed as a 

I I 

2.1 I 
0 .2 .4 .6 .8 1. 

Figure 1. Variation of the Henry's law constant of water with 
solvent composition in the water-carbon tetrachloride-cyclohexane 
system (A) and the water-benzene-cyclohexane system (B). 
Points are experimental values. For curves A and B, X is the mole 
fraction of carbon tetrachloride and benzene, respectively. The 
curves were calculated by fitting to the end points (X = 0 and 
1) and by assuming no preferential solvation. 

no such discrepancy occurs in the cyclohexane-carbon 
tetrachloride mixture (open squares). The results for 
the benzene-carbon tetrachloride system are similar to 
those for the benzene-cyclohexane solvent. Since a 
lower K (or In K )  means a higher solubility, it was con- 
cluded that water was preferentially solvated by benz- 
ene in the benzene-containing mixed solvents, but that 
no significant preferential solvation of the water oc- 
curred in the carbon tetrachloride-cyclohexane mixed 
solvent. A hydrogen-bonding-like interaction between 
water and the r-electron cloud in benzene seemed to 
be a reasonable explanation for these results. Thus the 
extra energy from this interaction makes possible some 
microscopic unmixing of the binary solvent mixture so 
as to provide the water with more benzene molecules 
in its immediate vicinity. 

(b) The Influence of Quantum Effects.20 It is 
easy to show, on the basis of the much smaller mean 
free path in liquids than in gases, that conditions which 
ensure the validity of classical statistical mechanics are 
much more readily found in the gas phase than in so- 
lution.20 This difference in the degree of validity of 
classical statistics makes it necessary to correct the 
theoretical solubility expressions based on classical sta- 
tistics for those systems in which the temperature is low 
(T < 150 K) or the solute is light (i.e., molecular mass 
< 20) or both. For systems in which the quantum de- 
viations are not too large (e.g., excluding solutions in- 
volving H2 or He near absolute zero) the deviations can 
be treated as a perturbation on the classical result. The 

X 
n2-N~ _ - - - -  

c . 
5 '70 , 90 110 130 150 

T. OK 

Figure 2. Calculated and experimental Henry's law constants 
for hydrogen. The solid and broken curves give the quantum- 
corrected and classical results respectively. The data source was 
M. Orentlicher and J. M. Prausnitz, Chem. Eng. Sci., 19, 175 
(1964). (0)  Hz in CH,; (v) Hz in Ar; (0) Hz in Nz. 

7t " e  

6/ 
3 

0 

0 70 90 110 130 

T, OK 

Figure 3. Calculated and experimental Henry's law constants 
for neon. Curves are explained in caption for Figure 2. Data 
sources: Ne in Ar, W. B. Streett, J. Chem. Phys., 42,500 (1965); 
Ne in Nz, W. B. Streett, Cryogenics, 5, 27 (1965). (0) Ne in Ar; 
(0) Ne in Nz. 

detailed expressions for the first-order quantum cor- 
rection to the Helmholtz free energy and the chemical 
potential have been given elsewhere,2O and here we focus 
on some of the results that were found. 

I t  is seen from Figures 2 and 3 and Table I that the 
effect of including the correction for quantum devia- 
tions is to raise the calculated values of K ,  AH8', and 
V2* relative to what is obtained on the basis of purely 
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Table I1 
Comparisons of Calculated and Experimental Values of In K ,  AH, ' ,  and v,' for Ne in AK 

- 
AH,., cal/mol V 2 * ,  cm3/mol ____ _ _ ~  

In (Kiatm) 
LHB MC WCA exptl' LHB MC WCA exptl" LHB MC WCA exptl" 

__ T ,  K 
87.29 6.77 7.40 6.93 6.99 132 288 159 201 23.1 27.2 26.1 25 
87.42 6.77 7.40 6.92 6.97 132 289 159 232 23.2 27.3 26.1 - 

115.80 6.48 6.88 6.56 6.48 437 627 461 597 40.5 47.3 43.8 45 

a These values are from W. B. Streett,  J.  Chem.  Phys . ,  42, 500 (1965);  the AH,' have an estimated uncertainty of 150 cal/ 
These values are from W. B. Streett, J. Chem.  Phys . ,  46, 3282 (1967);  their uncertainty is estimated to  be 5 cm3/ m0L4 

mol. 

classical statistical mechanics. More speci€ically, we see 
from Figure 2 that the inclusion of the quantum term 
is crucial for quantitative agreement with experiment 
when the solute is H2 and the solvent is either liquid 
N2, Ar, or CH4. We see from Figure 3 that the quantum 
correction for Ne in either liquid N2 or Ar is significant 
a t  the lower temperatures shown but that it becomes 
less important as the temperature goes up. 

Table I demonstrates the result that for H2 in benz- 
ene a t  ordinary temperatures the quantum term con- 
tribution to K and to AH,' cannot be neglected since 
it contributes between 5 and 10% toward the overall 
value of these functions. The quantum correction to 
V2' is relatively small. Table I also demonstrates the 
result that quantum deviations in solubility calculations 
can be neglected in ordinary solvents at ordinary or high 
temperatures provided the solute has a molecular mass 
equal to or greater than that of He. This limit was 
never before established. 

( e )  Relative Accuracy of Different Perturbation 
Theories in Solubility  calculation^.^^ Each of eq 
3 to 5 is based on a different perturbation theory. 
Consequently, by using each of these equations in eq 
7 to 9 and applying the result to a particular system, 
we can intercompare the three theories with respect to 
how well they predict experimental results, and we can 
learn how sensitive a particular solubility function (e.g., 
K ,  AHs*, or V2*) is to the theory being used to obtain 
it. This was done for a variety of systems,24 and a 
sample of the results obtained are displayed in Table 
II for the system Ne in Ar. In these calculations the 
same intermolecular pair potentials, taken from gas- 
phase virial coefficients, were used. We see from Table 
I1 that the LHB and WCA theories provide similar and 
good predictions for In K ,  but that the predictions from 
the MC theory are worse. The relatively poor perform- 
ance of the MC theory is believed due to the fact that 
the upper bound on the free energy that this theory is 
based onlOJ1 is too high a bound to be useful for highly 
accurate solubility predictions. The closeness of the 
predictions of the other two theories (both to experi- 
mental results and to each other) is remarkable. The 
WCA theory is known to be more accurate than first- 
order LHB theory with respect to the prediction of total 
thermodynamic properties (e.g., pfl.25 Apparently the 
function 

upon which solubility depends (see eq 7) entails a fair 
amount of cancellation among the higher order terms 
left out in the LHB theory. 

We see from Table I1 that all three theories predict 
the functions AH; and V2' to within experimental error. 

I 1 

t n  K ~ 

?a 

41 

I / I 
/ 

41 /. I 
I-1 

8- 100 ' 120 140 

T. K 
Figure 4. Calculated and experimental Henry's law constants. 
Labels A, B, and C refer to the systems He in Ar, Ne in Ar, and 
Kr in Ar, respectively. The solid curves include the three-body 
dispersion nonadditive term; the dashed curves do not. Data 
sources: Ne in Ar, W. B. Streett, J. Chem. Phys., 42, 500 (1965); 
He in Ar, K. A. Solen, P. L. Chueh, and J. M. Prausnitz, Ind. Eng. 
Chem. Process Des. Deu., 9, 310 (1970). (v) Ne in Ar; (0) He 
in Ar. 

Unfortunately this is a consequence of the sizeable un- 
certainty in the experimental values of these functions. 
The spread in the predicted values of these quantities 
that results from the use of the different theories is 
certainly significant; presumably the WCA predictions 
are the most accurate. 

(a) The Role of Nonadditivity of the Pair Psten- 
tials.26 A feature shared by all previous generations of 
solubility theories was the assumption of perfect addi- 
tivity of the intermolecular pair potentials. This obvi- 
ously cannot be perfectly true because the presence of 
other particles around an interacting pair will, because 
of their interactions with the pair, alter the pair poten- 
tial from what it would be in the absence of neighboring 
particles. 

It is generally believed (at least for isotropic particles) 
that the most important of the higher-body nonadditive 
terms is that due to three-body dispersion forces, for 
which the potential energy is given by the Axilrod- 
Teller formula.27 As with quantum deviations, three- 
body nonadditive effects can be formally dealt wlth by 
treating them as a perturbation to the two-body (i.e., 
pairwise additive) result. The detailed form of the 
first-order correction to p f  due to this effect has been 

(27) B. M. Axilrod and E. Teller, J .  Chem. Phys., 11, 299 (1943). 
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given elsewhere,26i28 and here we will concentrate on the 
results obtained. 

Some of the results of the calculations for In K are 
shown in Figure 4, from which the following principal 
features are apparent. (1) The effect of including the 
triple-body dispersion term is to raise the calculated 
values of K relative to the values obtained for this 
quantity using only two-body forces. (2) The relative 
influence of the three-body term on K increases in the 
order (He in Ar) C (Ne in Ar) C (Kr in Ar). The effect 
is so pronounced in the system Kr in Ar that it is un- 
likely that “effective” pair potentials (which are con- 
taminated by nonadditive effects) could ever properly 
account for the thermodynamics of this or of any system 
with a large so1ute:solvent size ratio. (3) Inclusion of 
the three-body nonadditive term results in excellent 
agreement with experimental data in those systems for 
which data are available. For the system Ne in Ar, 
where inclusion of this term significantly alters the 
calculated values of K ,  the agreement with experiment 
is improved relative to what is obtained by assuming 
pairwise additivity. Similar conclusions are drawn by 
examining the effect of nonadditivity on the functions 
AHs‘ and V2*.26 
What Next? 

The next major challenge would seem to be the cal- 
culation, from a rigorous molecular basis, of solubilities 
and related functions in complex chemical systems, i.e., 
those in which anisotropic forces such as anisotropic 
overlap and dispersion forces, multipolar forces, and 
charge-transfer forces play a significant role. For exam- 
ple, a rigorous molecular interpretation of the solubility 
and the temperature and pressure derivatives of the 

(28) J. K. Lee, D. Henderson, and J. A. Barker, Mol. Phys., 29, 429 
(1975). 

solubility of benzene in water is still not feasible. The 
barriers to such a calculation are of two types. First, 
the relevant, full angle-dependent intermolecular po- 
tentials are not available for complex polyatomic mol- 
ecules. A considerably less severe, but still significant, 
restriction is the absence of a statistical-mechanical 
formalism capable of accommodating dense fluids 
wherein the intermolecular interactions are strongly 
anisotropic. There have been a number of attempts 
made recently to deal with this p r ~ b l e m , ~ ~ - ~ ~  the most 
promising of which is, in the opinion of the author, one 
due to Gray and G ~ b b i n s , ~ I - ~ ~  who use perturbation 
theory to express the free energy of an anisotropic fluid 
as an expansion around that of an isotropic (e.g., Len- 
nard- Jones) reference state. These authors have ap- 
plied their theory to investigate the role of anisotropic 
forces in phase separations and related phenomena. 
While the theory is in principle applicable to molecules 
with any degree of anisotropy, difficulties are encoun- 
tered in the evaluation of the higher order terms in the 
expansion, which become increasingly important as the 
anisotropy becomes large. For example, a molecule such 
as benzene, which is moderately anisotropic in its shape, 
or water, which manifests strong multipolar anisotropy 
(Le., hydrogen bonding), can only just barely, if a t  all, 
be accommodated by this theory. More highly aniso- 
tropic molecules cannot. It seems likely that improve- 
ments in this theory, which would increase the range 
of its applicability, will be developed in the near future. 

(29) D. Chandler and L. R. Pratt, J .  Chem. Phys., 65, 2925 (1976). 
(30) L. R. Pratt and D. Chandler, J .  Chem. Phys., 67, 3683 (1977). 
(31) M. Flytzani-Stephanopoulos, K. E. Gubbins, and C. G. Gray, Mol. 

(32) C. G. Gray, K. E. Gubbins, and C. H. Twu, J .  Chem. Phys., 69, 

(33) J. Downs, K. E. Gubbins, S. Murad, and C. G. Gray, Mol. Phys., 

Phys., 30, 1649 (1975). 

182 (1978). 

37, 129 (1979). 
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The accidental and independent discovery of di- 
cyclopentadienyliron, now better known as ferrocene, 
was reported by two research groups in 1951 and 1952.’ 
This was the first pure hydrocarbon derivative of iron 
to be prepared, and its exceptional stability caused 
considerable excitement. Ferrocene is not only unaf- 
fected by air, moisture, and heat up to 470 “C, it can 
be boiled in concentrated hydrochloric acid or 10% 
caustic soda without decomposition. Even somebody 
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who had not completed his secondary education at  the 
time can feel some of this excitement when reading the 
literature. Within months the then novel but now 
well-known sandwich model had been proposed by 
Wilkinson, Rosenblum, Whiting, and Woodwardza in 
the United States and independently by Fischer and 
Pfab2b in Germany, and confirmed by X-ray crystallog- 
r a ~ h y . ~  During the following years the dicyclo- 

(1) (a) T. J. Kealy and P. L. Pauson, Nature (London), 168, 1039 
(1951); (b) S. A. Miller, J. A. Tebboth, and J. F. Tremaine, J.  Chem. Soc., 
632 (1952). 

(2) (a) G. Wilkinson, M. Rosenblum, M. C. Whiting, and R. B. Wood- 
ward, J .  Am. Chem. SOC., 74,2125 (1952); (b) E. 0. Fischer and W. Pfab, 
2. Nuturforsch. B ,  7, 377 (1952). 

(3) (a) P. F. Eiland and R. Pepinsky, J.  Am. Chem. Soc., 74, 4971 
(1952); (b) J. D. Dunitz and L. E. Orgel, Nature (London), 177, 121 
(1953). 
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